
J. Cent. South Univ. Technol. (2008) 15: 877−881 
DOI: 10.1007/s11771−008−0160−2 

 

Retrieval of canopy biophysical variables from remote sensing data using 
contextual information 

 
XIAO Zhi-qiang(肖志强)1, 2, WANG Jin-di(王锦地)1, 2, LIANG Shun-lin(梁顺林)3, 

QU Yong-hua(屈永华)1, 2, WAN Hua-wei(万华伟)1, 2 
 

(1. State Key Laboratory of Remote Sensing Science 
Jointly Sponsored by Beijing Normal University and Institute of Remote Sensing Applications,  

Chinese Academy of Sciences, Beijing 100875, China; 
2. School of Geography, Beijing Normal University, Beijing 100875, China; 

3. Department of Geography, University of Maryland, College Park, MD 20742, USA) 
                                                                                                  

 
Abstract: In order to improve the accuracy of biophysical parameters retrieved from remotely sensing data, a new algorithm was 
presented by using spatial contextual to estimate canopy variables from high-resolution remote sensing images. The developed 
algorithm was used for inversion of leaf area index (LAI) from Enhanced Thematic Mapper Plus (ETM+) data by combining with 
optimization method to minimize cost functions. The results show that the distribution of LAI is spatially consistent with the false 
composition imagery from ETM+ and the accuracy of LAI is significantly improved over the results retrieved by the conventional 
pixelwise retrieval methods, demonstrating that this method can be reliably used to integrate spatial contextual information for 
inverting LAI from high-resolution remote sensing images. 
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1 Introduction 
 

Canopy biophysical variables, such as leaf area 
index (LAI), are important input or output parameters of 
some dynamic process models such as crop growth 
models, land surface models, and have been widely 
applied to large area water and carbon cycle simulation, 
climatic modeling and global change research. Therefore, 
it is important to precisely estimate canopy biophysical 
variables at the regional or global scale. And remote 
sensing, which has been widely used in various fields[1−2], 
provides a unique way to obtain canopy biophysical 
variables. 

Currently, there are many methods to estimate 
biophysical variables from remote sensing data. And they 
can be roughly divided into following classes: by 
statistical relationship between LAI and spectral 
vegetation indices, by physical model inversion and by 
other nonparametric methods[3−4]. These methods have 
their own usefulness and limitations. Since the model 
inversion methods are physically based and can adjust to 
a wide range of situation[5], radiative transfer models are 
more frequently used in the inverse mode to estimate the 
canopy biophysical variables from remote sensing 

data[6−7]. 
However, the usual approaches to retrieve 

biophysical variables from remote sensing data are 
limited to pixelwise retrieval, and there are only a few on 
the parameter retrieval from remote sensing data using 
spatial contextual information[8]. 

There are generally two main types of contextual 
information[9], that is, interpixel surface characteristic 
dependency context and interpixel correlation context. 
And in many remotely sensed images, especially the 
high-resolution remote sensing images, objects on the 
ground are much greater than the pixel element size so 
that neighboring pixels are more likely to come from the 
same class and form a homogeneous region. And the 
neighboring pixels from the same class always possess 
identical or similar surface characteristic parameters. 

Therefore, it makes sense to introduce the related 
information among the neighboring pixels in the 
parameter retrieval process to estimate canopy 
biophysical variables accurately from remote sensing 
data. In this work, a new method was put forward to 
retrieve canopy biophysical variables using the 
contextual information of remote sensing data. Starting 
from the posterior probability formula defined by 
TARANTOLA[10], a cost function was constructed to 
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retrieve canopy biophysical variables from remote 
sensing data using contextual information. Retrieval of 
LAI from ETM+ data using this method was finally 
illustrated. 
 
2 Retrieval method 
 
2.1 Conventional method for parameter retrieval 

Given a set of remote sensing measurements, the 
conventional inversions of physically-based canopy 
reflectance model determine the set of canopy 
biophysical variables m by minimizing the cost function 
defined in Eqn.(1) such that the simulated reflectances 
optimally fit the measured reflectances[11−12]. 
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where  k=1, 2, …, n; dk and gk(m), are the remote 
sensing measurements and reflectances simulated from 
the model respectively, and ωk is the weighting 
coefficient. 

In general, these inversion problems are ill-posed 
mainly because of the non-unique solution and the 
measurement and model uncertainties[13−14]. To reduce 
the uncertainties associated to the estimation of canopy 
biophysical variables in the radiative transfer model 
inversion process, the prior information of biophysical 
variables is used to solve the ill-posed problems[13, 15−16]. 

Let M be the model space, and D the data space. 
TARANTOLA[10] defined the posterior probability 
density in space D×M as follows: 
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where  α is a normalization constant, m and d are 
vectors in model space and data space respectively, ρ(d, 
m) is the prior probability density in space D×M, which 
represents both information obtained on the observable 
data d and prior information on the model parameters m, 
Θ(d, m) is the theoretical probability density which 
constructs the physical correlations between d and m, 
and µ(d, m) represents the homogeneous state of 
information. Then, the posterior information in the model 
space is given by the marginal probability density  
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Using Eqn.(2) and Eqn.(3), the posterior 

information in the model space is 
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where  θ(d|m) is a probability of d for every given 

model m. 
Assume that the model parameters, the observation 

variables and the prior information mp on the model 
parameters are Gaussian, then there exists 
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where  CD is the covariance matrix representing the 
measurement uncertainties and model uncertainties, and 
CM is the covariance matrix representing the uncer- 
tainties of a prior information on the model parameters. 

Thus, the retrieval of canopy biophysical variables 
from remote sensing data consists in searching for the 
maximum likelihood of the posterior probability density 
function σM(m) of canopy biophysical variables, or 
minimizing the cost function defined in Eqn.(6). 
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Eqn.(6) incorporate the observational data and the 
prior information of canopy variables. And the cost 
function has been widely used in the parameter retrieval 
from remote sensing data. However, the cost function, 
constructed just using the individual pixel measurement 
and prior information on the model parameters, makes no 
use of the related vegetation parameter information 
among the neighboring pixels. 
 
2.2 Parameter retrieval using contextual information 

In order to improve the accuracy of the parameter 
retrieval from remote sensing data, an attempt was made 
to retrieve canopy biophysical variables using the 
contextual information. 

As shown in Fig.1, the observational information at 
pixel (i, j) and its 4-neighboring pixels are used to 
estimate canopy biophysical variables at pixel (i, j). Then, 
the data space is extended as D=Di, j×Di−1, j×Di, j−1×  
Di, j+1×Di+1, j, in which each vector is d(d=(di, j, di−1, j,  
 

 
Fig.1 Nearest neighbours of pixel (i, j) 
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di, j−1, di, j+1, di+1, j)). Therefore, the posterior probability 
density in the model space can be expressed as follows:  
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Assume conditional independence of mi±1,j, mi,j±1 of 
the 4-neighbours of pixel (i, j) for a given mi, j, then, 
Eqn.(7) can be extended as 
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where  the first integral term, similar to the integral 
term in Eqn.(4), represents the parameter retrieval 
constraint from the observational data at pixel (i, j), and 
the latter four integral terms represent parameter retrieval 
constraints from the observational data at the 4-neighbor 
pixels. 

Assume that the model parameters, the observation 
variables and the prior information on the model 
parameters are Gaussian distribution, then, the first 
integral term in Eqn.(8) can be written analogously as 
follows: 
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And the second integral term is 
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where  θ(mi+1,j|mi,j), represents the conditional 
probability of the information transfer between the 

nearest neighbor pixel (i,j) and (i+1,j). Assume 
θ(mi+1,j|mi,j) is Gaussian distribution, then we have 
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where  σ is a parameter to determine the effect of 
neighboring pixel (i+1, j). 

The latter three integral terms have the similar 
expressions to the second integral term. Then Eqn.(8) 
can be written as follows: 
 
σM(mi, j)=αexp[−S2(mi, j)]R(mi, j)                 (12)  
where 
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Apply logarithm to both sides of Eqn.(12), then 

 
S3(mi, j)=S2(mi, j)−lnR(mi, j)                     (13)  

Eqn.(13) is the cost function to retrieve the canopy 
biophysical variables at pixel (i, j) using spatial 
contextual information. 

From Eqn.(11), the less the difference between the 
parameters mk, l (|k−i|+|l−j|≤1) at the neighboring pixels 
and mi, j at the current one is, the greater the value of the 
spatial information transfer function is, and the greater 
the influence from the neighbor pixels on the parameter 
retrieval at the pixel (i, j) is. When the spatial 
information transfer function θ(mi+1, j|mi, j) meets the 
uniform distribution, Eqn.(13) reduces to the cost 
function defined in Eqn.(6). In other words, there is no 
information from 4-neighbor pixels contributing to the 
parameter retrieval at pixel (i, j). 
 
3 Experimental results and analysis 
 

In order to test the above algorithm, the ETM+ 
reflectance data were used to retrieve LAI. The results 
were also compared with those from a conventional 
method. 
 
3.1 Radiative transfer model and experimental data 

Many canopy radiative transfer models have been 
developed to obtain land surface biophysical parameters. 
In parameter retrieval of this work, SAILH model, 
developed by VERHOEF[17], was chosen as the forward 
model to simulate the canopy reflectance. 

The main input parameters of the SAILH model are 
the canopy structure parameters and view geometry 
parameters. The canopy structure parameters include 
LAI, leaf angle distribution (LAD) function parameters 
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(a and b) and hotspot-effect parameter, which represent 
the structural characteristics of canopy; leaf reflectance 
and leaf transmission which denote the spectrum 
characteristics of leaves; soil reflectance which denotes 
the spectrum characteristics of the background and 
SKYL which denotes the condition of the atmosphere. In 
the process of parameter retrieval, LAI is a free 
parameter and other parameters, determined according to 
the a prior information, are fixed. The solar zenith angle 
is calculated with ETM+ overpass. Since ETM+ 
observes at nadir, the view zenith angle is assumed to be 
0˚, and the relative azimuth angle is set to be an arbitrary 
value. 

The satellite and ground measurement data provided 
by the MODIS validation team[18] were used to validate 
the algorithm. Konza Prairie (96.56˚ W, 39.08˚ N), KS, 
USA was selected as the test site. This region is mainly 
covered by grass. ETM+ data, with spatial resolution of 
25 m, acquired on Aug 13th, 2001, have been corrected 
atmospherically. The BIGFOOT project provides the 
retrieval LAI from the ETM+ data[19]. Since the LAI 
provided by BIGFOOT has been validated with the 
ground measurements, it is taken as “true LAI” to 

compare with the results retrieved by the algorithm in 
this experiment. 
 
3.2 Retrieval results 

A prior information can be obtained from spectral 
library or many other means. In our retrieval, MODIS 
LAI products on August 13, 2001 were used as the prior 
information. 

MODIS LAI products have spatial resolution of   
1 km and adopt the projection of ISIN, while the ETM+ 
data adopt the projection of UTM WGS84. The general 
coordinate transformation package (GCTP) was used 
here to make a projection transition between the 
coordinates and the LAI products were resampled. 

The false composition imagery from ETM+ bands 1, 
2, and 4 is shown in Fig.2(a) and LAI mapping results 
retrieved from the ETM+ data are displayed in Fig.2(b). 
As can be seen, the spatial distribution of LAI values 
matches the pattern of false composition imagery very 
well and the range of LAI values is also reasonable. 

To further confirm the validity of the algorithm, a 
small area of 8×8 is chosen from ETM+ image in which 
each pixel has the same land cover type. Fig.3 shows the 

 

 
Fig.2 LAI mapping results retrieved from ETM+ data: (a) ETM+ data (false composition imagery with bands 4, 2 and 1); (b) LAI 
retrieved from ETM+ data 
 

 
Fig.3 Scattered plots between true LAI and estimated LAI with prior information: (a) Retrieval LAI with spatial information;      
(b) Retrieval LAI without spatial information 
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retrieval results of each pixel in the area. Fig.3(a) shows 
the results that take into account the spatial information; 
Fig.3(b) shows the results of the conventional retrieval 
method. Associated statistics including correlation 
coefficient (R2) and root mean square error (E) are also 
presented in Fig.3. As can be seen, by introducing the 
spatial contextual information, the results with E=0.62 
are much better than those estimated using conventional 
algorithm. 
 
4 Conclusions 
 

1) A new algorithm using spatial contextual 
information is developed to estimate canopy biophysical 
variables from high-resolution remote sensing images. 
And the traditional retrieval cost function is just the 
special form of the cost function with the spatial 
contextual information. 

2) Contextual information plays an important role in 
improving the retrieval performance. The experimental 
results show that proper utilization of spatial contextual 
information can improve the retrieval performance 
significantly compared with the conventional pixelwise 
retrieval. 

3) The algorithm presented in this work just aims at 
the observational information at the 4-neighbor pixels, 
and further research will extend the neighborhood. 
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